Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis and structures of the 2-(dimethylsila)pyrimidine derivatives $[Si(Me)_2NC(Ar)C(H)C(Ar)NX]_n$ (Ar = Ph, C₆H₄Bu^t-4; X = H, SiMe₃, Li(hmpa)₂, K(thf)₃; n = 1, 2)

Xue-Hong Wei^{a,b}, Peter B. Hitchcock^a, Michael F. Lappert^{a,*}

^a Chemistry Department, University of Sussex, Brighton BN1 9QJ, UK
^b The School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China

ARTICLE INFO

Article history: Received 17 June 2008 Received in revised form 11 July 2008 Accepted 15 July 2008 Available online 22 July 2008

Keywords: Lithium Potassium Silylmethyls 2-Silapyrimidines X-ray structures

ABSTRACT

Five crystalline 2-(dimethylsila)pyrimidine derivatives $[Si(Me)_2NC(Ar)C(H)C(Ar)NX]_n$ (**Z**) have been prepared in excellent **1**–**4** or satisfactory **5** yield and characterised. The source of each was ultimately Li[CH(SiMe₂R)(SiMe₂OMe)] [R = Me (**B**) or OMe (**I**)]. Compound **1** (**Z** with Ar = Ph, X = SiMe₃, *n* = 1) was obtained from **Z** [with Ar = Ph, X = Li(OEt₂), *n* = 4; previously isolated from **B** [P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342]] and Me₃SiCl. The potassium salt **2** [**Z** with Ar = C₆H₄. Bu^t-4; X = K(thf)₃, *n* = 2] was made from K[CH(SiMe₃)(SiMe₂OMe)] (**C**) (via **B**) and 4-Bu^tC₆H₄CN. Treatment of **2** with 1,2-dibromoethane afforded **3** (**Z** with Ar = 4-Bu^tC₆H₄; X = H, *n* = 1); which when reacted with successively *n*-butyllithium and Me₃SiCl produced **4** (**Z** with Ar = 4-Bu^tC₆H₄CN and then OP(NMe₂)₃ (\equiv hmpa). Plausible reaction pathways from the appropriate alkali metal alkyl **C** or **I** to **2** or **5**, respectively, are suggested; these involve regiospecific 1,3-migrations of SiMe₂OMe from **C** → N and electrocyclic loss of Me₃SiOMe or SiMe₂(OMe)₂, respectively. The X-ray structures of crystalline **1**, **2** and **5** are presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We have previously reported on reactions of selected trimethylsilylmethyllithium compounds with various nitriles free from α -hydrogen giving rise *inter alia* to lithium β -diketiminates. Some reactions relevant to the present study, in which Li[CH(SiMe₃)₂] and PhCN were the precursors, are shown in Scheme 1 [1,2]. This demonstrates (i) the formation of the derived lithium β -diketiminate by a process implicating successive 1,3-trimethylsilyl migrations from C \rightarrow N [1], (ii) a ligand transfer reaction yielding the potassium β -diketiminate [2], and (iii) the protodesilylation of the latter giving rise to the macrocyclic potassium salt **A** [2].

An extension of this chemistry featured the ligands [CH(SiMe₃)-{SiMe_{3-n}(OMe)_n}]⁻ (n = 1, 2), [CH{SiMe₂(OMe)}₂]⁻ and [CH(SiMe₃)-(SiMe₂Ph)]⁻ including the alkali metal methoxysilylmethyls [Li{CH(SiMe₃)(SiMe₂OMe)}]₈ (**B**) and K[CH(SiMe₃)(SiMe₂OMe)] (**C**) [3]. The synthesis and structures of four crystalline lithium β -diketiminates derived from reactions of **B** with two equivalents of benzonitrile, or successive equivalents of Bu^tCN and PhCN, have been reported [4]. Relevant to the present study was the isolation (albeit as a very minor product) of the crystalline reduced *N*-lithiosilapyrimidine **D** (Scheme 2) from **B** and PhCN; the major products were the 1-azaallyllithium compound [Li{N(SiMe₂OMe)C(Ph)CH(SiMe₃)}]₃ (showing regioselective SiMe₂OMe, rather than SiMe₃, 1,3-C \rightarrow N migration) and also [Li(OEt₂){NSi(Me)₂C(SiMe₃)C(Ph)N}₂]₂ (structurally related to **D** of Scheme 2) [4]. The tetracyclic structure of crystalline **D** had previously been established crystallographically, although the data were of poor quality [4].

2. Results and discussion

2.1. Synthesis of compounds **1** and **2** derived from [Li{CH(SiMe₃)(SiMe₂OMe)}]₈ (**B**)

Reactions leading to the crystalline yellow compounds 1 and 2 are summarised in Scheme 2. Thus, the reduced *N*-trimethylsilyl-N,N'-dimethyl-2-silapyrimidine 1 was isolated from **D** and trimethyl(chloro)silane. The dimeric reduced *N*-tris(thf)potassio-N,N'-dimethyl-2-silapyrimidine 2 was obtained from the potassium alkyl **C** and 4-*tert*-butylbenzonitrile. The cited yields (excellent for 1, good for 2) refer to isolated crystalline complexes, and were not optimised.

^{*} Corresponding author. Tel.: +44 1273 678316; fax: +44 1273 677196. *E-mail address*: m.f.lappert@sussex.ac.uk (M.F. Lappert).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.07.019

mp 165 ^oC (decomp.)

Scheme 2. Reagents and conditions: (i) Me₃SiCl, thf/Et₂O (1/5), 0 °C; (ii) 2(4-Bu⁴C₆H₄CN), Et₂O, 20 °C; (iii) removal of Et₂O and crystn from thf.

The structures of **1** and **2** were established by good (**1**) but only modest (**2**) quality X-ray data. For **2**, this is in part attributed to the rather loosely bound thf ligands. For this reason, crystalline **2** was thermally freed from thf, prior to its characterisation by microanalysis (the low carbon value is considered to have been caused by incomplete combustion of **2** due to the formation of carbon silicide), NMR spectroscopy and El-mass spectrometry.

Compound **1** is an isomer of **E**. The latter had been obtained in good yield from $[Y{CH(SiMe_3)(SiMe_2OMe)}_3]$ and six equivalents of benzonitrile by heating in toluene, with $Y(OMe)_3$ as co-product, demonstrating regioselective 1,3-migration of SiMe₂OMe (rather than SiMe₃) from $C \rightarrow N$ [5].

The formation of **2** from **C** is attributed to the reaction sequence shown in Scheme 3. The first step, involving equivalent portions of **C** and 4-Bu^tC₆H₄CN, is believed to be a similar regioselective process leading to the 1-azaallypotassium compound **F**. In support, we cite the reaction of equivalent portions of **B** and PhCN which afforded the crystalline complex $[\text{Li}\{N(\text{SiMe}_2\text{OMe})C(\text{Ph})CH(\text{SiMe}_3)]_3$ [6]. Nucleophilic attack of **F** on a second equivalent of the nitrile, with an SiMe₃ 1,3-shift from C \rightarrow N, is suggested to have given a further intermediate **H** (possibly via **G**), which ultimately underwent an Me₃SiOMe fragmentation in yielding **2**.

2.2. The X-ray structure of the crystalline compounds 1 and 2

The molecular structure of the crystalline compound **1** is shown in Fig. 1 and selected geometrical parameters are listed in Table 1. The atoms N1C1C2C3 of the reduced 2-silapyrimidine ring are coplanar; the Si and N2 atoms are on opposite sides (by 0.52 and -0.27 Å, respectively) of this plane, as are the *ipso*-carbon atoms C4 and C10 (by -0.44 and 0.13 Å, respectively) of the phenyl rings attached to C1 and C3, respectively. Each of the atoms C1, C3 and

Fig. 1. ORTEP representation of the molecular structure of 1 (50% ellipsoids; H atoms omitted).

N2 (and presumably also C2) is in a distorted trigonal planar environment. Each of the endocyclic bond angles subtended at N1, C1, C2 and C3 is closely similar, $123.2 \pm 0.7^{\circ}$. Compound **1** is an isomer of **E** [5], the two compounds being related by a notional 1,3-C N trimethylsilatropy; some comparative structural data for **E** are included in Table 1.

The molecular structure of the crystalline, centrosymmetric, tetracyclic potassium compound **2** is shown in Fig. 2. Selected geo-

metrical parameters are listed in Table 2, together with those for the homologous compound **A** [3]. There is an outer twelve-membered macrocycle $K_{N2C1C2C3N1K'N2'C1'C2'C3'N1'}$. Its core is an almost planar (K and K' are 0.08 Å out of the N1N2N1'N2' plane) hexacycle. The atoms N1 and N2 are also part of a boat-shaped ring in which the atoms Si and C2 are 0.44 and 0.12 Å, respectively, out of the C1N2N1C3 plane; as are the *ispo*-carbon atoms C4 and C14 (attached to C1 and C3, respectively) by -0.15 and -0.19 Å, respectively. The dihedral angle between the C5C4C9 and the N2C1C2 planes is 24°, and that between the C15C14C19 and the N1C3C2 planes is 23°. Each of the atoms C1, C3, N1 and N2 is in a threecoordinate environment: distorted trigonal planar and pyramidal arrangements are found at the carbon and nitrogen atoms, respectively. The potassium atoms are at the centre of a severely distorted trigonal bipyramid.

2.3. Synthesis of the crystalline 2-(dimethylsila)pyrimidine derivatives **3**, **4** and **5**

The preparation of compounds **3** and **4** is outlined in Scheme 4. Thus, treatment of the potassium salt **2** with more than two equivalents of 1,2-dibromoethane afforded compound **3**, presumably with elimination of 2KBr and C_2H_4 . Compound **3** with successively *n*-butyllithium and chloro(trimethyl)silane gave **4**. The crystalline compounds **3** and **4** were each obtained in excellent yield.

The related crystalline lithium salt **5** was isolated in modest yield from Li[CH(SiMe₂OMe)₂] (**I**) [3] with two equivalents of 4-Bu^tC₆H₄CN and then hmpa [hmpa = OP(NMe₂)₃], Eq. (1).

Table 1						
Selected bond	lengths	(Å) and	angles	(°) for 1	and E [5]	

Bond lengths	1	E [5]	Bond angles	1	E [5]
Si1-N1	1.7342(16)	1.7367(18)	N1-Si1-N2	104.94(7)	107.44(9)
Si1–N2	1.7593(16)	1.7429(18)	S1-N1-C1	116.27(12)	121.02(14)
N1-C1	1.289(2)	1.281(3)	S1-N2-C3	109.00(12)	120.20(15)
N2-C3	1.409(2)	1.280(3)	N1-C1-C2	122.49(16)	124.72(18)
C1-C2	1.469(2)	1.516(3)	N2-C3-C2	122.48(15)	125.39(19)
C2-C3	1.359(3)	1.521(3)	C1-C2-C3	123.93(16)	115.71(17)
N2-Si2	1.7688(16)	_	Si1-N2-Si2	126.96(9)	
C1-C4	1.494(2)		N1-C3-C10	119.94(15)	
C3-C10	1.495(2)		N2-C3-C10	118.44(15)	

Fig. 2. ORTEP representation of the molecular structure of 2 (20% ellipsoids; H atoms omitted). Symmetry transformation to equivalent atoms: -x + 1, -y + 1, -z + 1.

The only previously related reaction of **I** was with Bu^tCN producing the lithium azaallyl **J** [6]. Hence it is presumed that the first intermediate from equivalent portions of **I** and the nitrile is the 1-azaallyllithium compound Li[N(SiMe₂OMe)C(C₆H₄Bu^t-4)CH(Si-Me₂OMe)], which with a second equivalent of the nitrile and hmpa gives **K** (possibly via **L**). The final step in the formation of **5** is attributed to the electrocyclic elimination of SiMe₂(OMe)₂ as depicted in **K**.

atom (attached to N1) and the C4 and C14 atoms (attached to C1 and C3, respectively) are -0.97, -0.15 and -0.31 Å, respectively, out of that plane. The aryl rings attached to C1 and C3 are twisted from this plane; thus, the dihedral angles between (i) the C5C4C9 and N1C1C2 planes and (ii) the C15C14C19 and N2C3C2 planes are 36° (i) and 6° (ii). The lithium atom is in a distorted trigonal planar environment and the angles subtended at the attached O1 and O2 atoms are 163.4(3) and 149.9(3)°, respectively.

The compounds **3**, **4** and **5** were characterised by satisfactory C/ H/N microanalysis, and NMR solution spectra and in the case of **5** by single crystal X-ray diffraction.

2.4. The X-ray structure of the crystalline lithium compound 5

The molecular structure of the crystalline lithium compound **5** is illustrated in Fig. 3 and selected geometric data are provided in Table 3. Its core is an envelope-shaped reduced 2-silapyrimidine ring in which the Si atom is 0.41 Å out of the essentially planar (C2 deviates by 0.02 Å from this plane) N1C1C2C3N2 array, while the Li

3. Experimental

3.1. General details

Experiments were performed under an atmosphere of argon, or in a vacuum, using Schlenk apparatus and vacuum line techniques. The solvents used were reagent grade or better and were freshly distilled under dry nitrogen gas and freeze/thaw degassed prior to use. The drying agents used were sodium benzophenone (Et₂O, thf), sodium-potassium alloy (C_5H_{12} , C_6H_{14}). Solvents were stored over a potassium mirror (C_5H_{12} , C_6H_{14}) or molecular sieves

Table 2	
Selected bond lengths (Å) an	d angles (°) for 2 and A [3]

Bond lengths	2	A [3]	Bond angles	2	A [3]
K-N1′	2.794(4)	2.829(6)	N1-K'-N2'	105.61(12)	108.6(2)
K-N2	2.782(4)	2.828(4)	N2'-Si'-N1'	108.6(2)	108.6(3)
N1'-Si1'	1.732(4)	1.733(6)	K-N2-C1	115.5(3)	114.2(4)
Si1'-N2'	1.735(4)	1.725(6)	Si'-N1'-K	117.0(2)	114.6(2)
N1-C3	1.308(6)	1.314(8)	K–N2–Si	119.4(2)	117.4(2
N2-C1	1.318(6)	1.326(9)	Si-N2-C1	114.2(3)	115.2(5)
C1-C2	1.418(7)	1.414(10)	N2-C1-C2	126.1(4)	125.7(6)
C3-C2	1.412(7)	1.398(9)	C1-C2-C3	121.6(4)	121.9(6)
C1-C4	1.514(7)	1.514(9)	C3-N1-Si	114.7(3)	114.8(5)
C3-C14	1.528(7)	1.519(10)			

4 Å [Et₂O, thf, C₆D₆, C₅D₅N, CDCl₃, (CD₃)₂SO]. The NMR spectra were recorded at 298 K using a Bruker DPX 300 (at 300.1 MHz for ¹H, 75.5 MHz for ¹³C and 116.6 MHz for ⁷Li) or AMX 500 (at 99.4 MHz for ²⁹Si) instrument, and were referenced externally (⁷Li, using LiCl; ²⁹Si using SiMe₄) or internally (¹H, ¹³C) to the residual solvent resonances. Electron impact mass spectra were ta-

ken from solid samples using a Kratos MS 80 RF instrument. Elemental analyses were determined by Medac Ltd, Brunel University. The compounds Li[CH(SiMe₃)(SiMe₂OMe)] (**B**) [3], Li[CH(SiMe₂OMe)₂] (**I**) [3], K[CH(SiMe₃)(SiMe₂OMe)] (**C**) [3], and $[\text{Li}\{\overline{\text{NC}(Ph)C(H)C(Ph)NSi(Me)_2}(OEt_2)]_4$ (**D**) [4] were prepared by published procedures. The compounds 4-Bu^tC₆H₄CN, 1,2-Br₂C₂H₄, Si(Cl)Me₃, (Me₂N)₃PO (hmpa), and LiBuⁿ in hexane were commercially available samples.

3.2. 1,1-Dimethyl-3,5-diphenyl-6-trimethylsilyl-2,6-diaza-1-silahexa-2,4-diene (1)

Chloro(trimethyl)silane (0.12 cm³, 0.92 mmol) was added to a stirred suspension of the diethyl ether-free lithium β -diketimina-todimethylsilane **D** (0.16 g, 0.56 mmol, based on monomer) in a mixture of thf (5 cm³) and hexane (25 cm³) at 0 °C. The mixture was set aside for 12 h at *ca.* 20 °C, then filtered. The filtrate was

3, 88%, yellow, mp 137-138 ^oC

4, 85%, yellow, mp 124-125 ^oC

Scheme 4. Reagents and conditions: (i) 2[CH₂Br]₂, thf/C₆H₁₄, 0 °C; (ii) LiBuⁿ, C₆H₁₄, -30 °C and then Me₃SiCl.

Fig. 3. ORTEP representation of the molecular structure of 5 (20% ellipsoids; H atoms omitted).

Table 3 Selected bond lengths (Å) and angles (°) for ${\bf 5}$

Bond lengths						Bond angles					
Si–N1	1.735(3)	C1-C2	1.408(5)	N1-Li	1.986(7)	N1-Si-N2	108.59(15)	C1-C2-C3	122.3(3)	N1-C1-C4	116.4(3)
Si–N2	1.721(3)	C2-C3	1.424(5)	Li-01	1.856(7)	Si-N1-C1	115.4(3)	Si–N1–Li	112.3(3)	N2-C3-C14	116.2(3)
N1-C1	1.334(5)	C1-C4	1.499(5)	Li-O2	1.879(7)	Si-N2-C3	116.7(3)	Li-N1-C1	127.5(3)	C2-C1-C4	117.8(3)
N2-C3	1.312(5)	C3-C14	1.522(5)	01-P1	1.476(3)	N1-C1-C2	125.8(3)	N1-Li-01	123.8(9)	C2-C3-C14	118.3(3)
				01-P2	1.478(3)	N2-C3-C2	125.5(3)	N1-Li-02	121.8(4)		

concentrated (to *ca.* 10 cm³) and stored at -25 °C for 2 d, whereafter pale yellow crystals of compound **1** (0.17 g, 87%) (Anal. Calc. for C₂₀H₂₄N₂Si: C, 68.6; H, 7.43; N, 8.00. Found: C, 68.3; H, 7.39; N, 8.02%), m.p. 92–93 °C, were obtained. ¹H NMR (CDCl₃): δ –0.12 (s, 9 H, SiMe₃), 0.55 (s, 6 H, SiMe₂), 6.51 (s, 1 H, CH), 7.06 (m, 3 H, Ph), 7.09 (m, 3 H, Ph), 7.18 (m, 2 H, Ph), 8.24 ppm (m, 2 H, Ph); ¹³C NMR (CDCl₃): δ 0.21, 3.13, 110.6, 128.6, 141.0, 143.4, 158.3, 171.7 ppm; ²⁹Si NMR (CDCl₃): δ –1.11 (SiMe₂), 7.74 ppm (SiMe₃). MS (*m*/*z*% and assignment): 350 (90, [*M*]⁺), 335 (22, [*M*-Me]⁺), 232 (72%), 130 (100%), 73 (70, [SiMe₃]⁺).

3.3. The potassium salt
$$[\{K(:N,N'-\kappa^2-L)(thf)_3\}_2]$$
 (2)
 $[[L = Si(Me)_2NC(C_6H_4Bu^t-4)C(H)C(C_6H_4Bu^t-4)N]]$

4-*tert*-Butylbenzonitrile (0.42 cm³, 2.64 mmol) was added by syringe to a solution of the potassium alkyl **C** (0.28 g, 1.31 mmol) in diethyl ether (20 cm³), which immediately become orange. The reaction mixture was stirred for 18 h at ambient temperature. The supernatant liquor was removed by decantation. The bright yellow residual solid was dissolved in thf (10 cm³) and stored at $-15 \,^{\circ}$ C for 48 h, whereafter yellow crystals of compound **2** (0.47 g, 56%), m.p. 145 $^{\circ}$ C (decomp.), were obtained. The sample for analysis was heated to remove thf (Anal. Calc. for C₂₅H₂₃KN₂Si: C, 70.0; H, 7.76; N, 6.53. Found: C, 66.6; H, 7.43; N, 6.62%) (the value for C was very low, attributed to formation of carbon silicide). ¹H NMR (C₆D₆/C₅D₅N): δ 0.52 (s, 6 H, SiMe₂), 1.26 (s, 18 H, CMe₃), 6.75 (s, 1 H, CH), 7.20 (d, 4 H, C₆H₄), 7.43 ppm (d, 4 H, C₆H₄); ¹³C NMR (C₆D₆/C₅D₅N): δ 2.99, 31.2, 94.4, 124.8, 127.1, 127.6, 144.3, 172.4 ppm; ²⁹Si NMR (C₆D₆/C₅D₅N): δ 5.69 ppm.

3.4. 1,1-Dimethyl-3,5-di(4'-tert-butylphenyl)-2,6-diaza-1-silahexa-2,4-diene (**3**)

1,2-Dibromoethane (0.053 cm³, 0.63 mmol) was added by syringe to a solution of the potassium salt 2 (0.32 g, 0.25 mmol) in a mixture of thf (10 cm³) and hexane (45 cm³) at 0 °C. The reaction mixture was stirred for 18 h at ambient temperature, then filtered.

Table 4	
---------	--

Crystal	data	and	structure	refinement	for	1, 2	and	5
---------	------	-----	-----------	------------	-----	------	-----	---

The filtrate was concentrated to *ca*. 15 cm³ and stored at -25 °C for 24 h, whereafter pale yellow crystals of compound **3** (0.17 g, 88%) (Anal. Calc. for C₂₅H₃₄N₂Si: C, 76.9; H, 8.72; N, 7.18. Found: C, 76.1; H, 8.69; N, 7.15%), m.p. 137–138 °C, were obtained. ¹H NMR (C₆D₆): δ 0.41 (s, 6 H, SiMe₂), 1.12 (s, 18 H, CMe₃), 3.91 (s, 1 H, NH), 6.34 (s, 1 H, CH), 7.24–7.36 (m, 6 H, C₆H₄), 8.31 ppm (d, 2 H, C₆H₄); ¹³C NMR (C₆D₆): δ 31.3, 34.6, 92.5, 125.8, 126.1, 140.3, 150.8, 164.2 ppm; ²⁹Si NMR (C₆D₆): δ 6.35 ppm. MS (*m*/*z*% and assignment): 390 (100%, [*M*]⁺), 333 (70%, [*M*–Bu^{*t*}]⁺), 216 (86%), 180 (48%), 57 (28%, [Bu^{*t*}]⁺).

3.5. 1,1-Dimethyl-3,5-di(4'-tert-butylphenyl)-2,6-diaza-4trimethylsilyl-1-silahexa-2,4-diene (**4**)

n-Butyllithium (0.26 cm³ of a 1.6 mol dm⁻³ solution in hexane, 0.41 mmol) was added dropwise to a cooled and stirred solution of the compound **3** (0.16 g, 0.41 mmol) in diethyl ether (60 cm^3) at -30 °C. The mixture was brought to ambient temperature and stirred for 4 h; then re-cooled to -78 °C before adding chloro(trimethyl)silane (0.05 cm³, 0.41 mmol) by syringe. The mixture was brought to ambient temperature and set aside with stirring for 12 h. The volatiles were removed in vacuo and the residue was extracted into hexane (30 cm³). The extract was concentrated to *ca*. 15 cm³ and stored at -25 °C for 24 h, yielding pale yellow crystals of compound 4 (0.16 g, 85%) (Anal. Calc. for C₂₈H₄₂N₂Si₂: C, 72.7; H, 9.09; N, 6.06. Found: C, 71.4; H, 8.97; N, 6.12%), m.p. 124-125 °C. ¹H NMR [(CD₃)₂SO]: δ 1.19 (s, 18 H, CMe₃), 5.78 (s, 2 H, NH), 6.84 (s, 1 H, CH), 7.36 (d, 4 H, C_6H_4), 8.28 ppm (d, 4 H, C_6H_4); ¹³C NMR [(CD₃)₂SO]: δ 31.3, 41.2, 92.4, 125.7, 126.1, 139.4, 151.7, 166.4 ppm.

3.6. N-Bis(hmpa)lithium[2,2-dimethyl-3-aza-4,6-di(4'-tertbutylphenyl)-2-sila-3,5-dienyl]amide (5)

4-*tert*-Butylbenzonitrile (0.26 cm³, 1.64 mmol) was added by syringe to a stirred solution of bis[dimethyl(methoxy)silyl]meth-ylithium (I) in diethyl ether (25 cm³) at 0 °C. Stirring of the mixture

1	2	5					
$C_{20}H_{26}N_2Si_2$	$C_{14}H_{114}K_2N_4O_6Si_2.3(C_4H_8O)$	C37H69LiN8O2P2Si					
350.61	1506.38	754.97					
223(2)	173(2)	223(2)					
Orthorhombic	Triclinic	Triclinic					
<i>Pna</i> 2 ₁ (No. 33)	<i>P</i> 1̄ (No. 2)	<i>P</i> 1̄ (No. 2)					
11.8450(2)	11.0985(4)	11.2203(5)					
19.9636(3)	13.5475(6)	13.2485(7)					
8.4915(1)	16.3214(7)	15.5275(8)					
90	87.381(2)	96.010(2)					
90	73.110(2)	102.637(3)					
90	79.508(2)	97.405(4)					
2055.27(5)	2308.9(2)	2212.3(2)					
4	1	2					
0.18	0.18	0.17					
4801, 0.053	6205, 0.084	7207, 0.062					
4236	4758	4832					
0.040, 0.097	0.115, 0.337	0.073, 0.158					
0.050, 0.102	0.142, 0.367	0.120, 0.185					
	1 C ₂₀ H ₂₆ N ₂ Si ₂ 350.61 223(2) Orthorhombic Pna 2 ₁ (No. 33) 11.8450(2) 19.9636(3) 8.4915(1) 90 91 92 93 94 95 95 90 90 90 90 91 92 93 94 9	12 $C_{20}H_{26}N_2Si_2$ $C_{14}H_{114}K_2N_4O_6Si_2.3(C_4H_8O)$ 350.61 1506.38 $223(2)$ $173(2)$ OrthorhombicTriclinicPna 2_1 (No. 33)PI (No. 2) $11.8450(2)$ $11.0985(4)$ $19.9636(3)$ $13.5475(6)$ $8.4915(1)$ $16.3214(7)$ 90 $87.381(2)$ 90 $73.110(2)$ 90 $79.508(2)$ 2055.27(5) $2308.9(2)$ 410.180.184801, 0.053 $6205, 0.084$ 4236 4758 0.040, 0.0970.115, 0.3370.050, 0.1020.142, 0.367					

was continued for 24 h at ambient temperature; a yellow precipitate had formed. Volatiles were removed *in vacuo* and the residue was washed twice with pentane, then extracted into diethyl ether (25 cm³). The extract was concentrated to *ca*. 10 cm³ and stored for a few days at $-27 \,^{\circ}$ C, yielding yellow microcrystals. Crystallisation from hmpa (0.5 cm³)/thf (5 cm³)/hexane (15 cm³) at 0 $^{\circ}$ C afforded yellow crystals of **5** (0.28 g, 46%) (Anal. Calc. for C₃₇H₆₉LiN₈O₂P₂Si: C, 58.9; H, 9.21; N, 14.83. Found: C, 58.7; H, 8.97; N, 14.47%), m.p. 114–116 $^{\circ}$ C. ¹H NMR (C₆D₆/C₅D₅N): δ 0.69 (s, 6 H, SiMe₂), 1.21 (s, 18 H, CMe₃); 2.26, 2.29 [s, 18 + 18 H, OP(NMe₂)₃], 6.63 (s, 1 H, CH), 7.31 (d, 4 H, C₆H₄), 8.23 ppm (d, 4 H, C₆H₄); ¹³C NMR (C₆D₆/C₅D₅N): δ 5.04, 31.5, 34.4, 36.5, 94.2, 124.8, 127.1, 145.6, 171.5 ppm; ⁷Li (C₆D₆/C₅D₅N): δ –0.84 ppm.

3.7. X-ray crystallographic studies

Diffraction data were collected on a Nonius Kappa CCD diffractometer (program package wiNGX) using monochromated Mo K α radiation, λ 0.71073 Å at 173(2) K. Crystals were coated with oil and then directly mounted on the diffractometer under a stream of cold nitrogen gas. In **2** there were two very poorly defined solvate molecules: one disordered in a general position and one disordered about an inversion centre. For both, atoms were included as isotropic C atoms with H atoms omitted. The diffraction from the crystal of **2** was weak and did not extend to high angle; the high *R* factors are a reflection of these problems; however, the complex is clearly defined. Absorption corrections were not applied. Refinement was carried out using SHELXL-97 [7]. Further details are in Table 4.

Acknowledgements

We thank BASF (and Drs. H. Görtz and G. Luinstra) for the award of a fellowship to X.-H.W. and Dr. A.V. Protchenko for useful discussions.

Appendix A. Supplementary material

CCDC 691609, 691610 and 691611 contains the supplementary crystallographic data for **1**, **2** and **5**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.07.019.

References

- P.B. Hitchcock, M.F. Lappert, M. Layh, D.-S. Liu, R. Sablong, S. Tian, J. Chem. Soc., Dalton Trans. (2000) 2301.
- P.B. Hitchcock, M.F. Lappert, D.-S. Liu, R. Sablong, Chem. Commun. (2002) 1920.
 F. Antolini, P.B. Hitchcock, M.F. Lappert, X-H. Wei, Organometallics 22 (2003)
- 2505.
- [4] P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342.
- [5] A.G. Avent, C.F. Caro, P.B. Hitchcock, M.F. Lappert, Z. Li, X.-H. Wei, Dalton Trans. (2004) 1567.
- [6] P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 683 (2003) 83.
- [7] G.M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.